Universal Document Loader with langchain-airbyte



AI Summary

- **Introduction**  
  - Presenter: Eric from Lang chain  
  - Topic: Demo of Lang chain airite package  
  - Context: Airite launched Pi airite for Python data loading  
  
- **Use Case for Airite**  
  - Loading pull request descriptions from Lang chain repository  
  - Issue: Difficulty finding old PRs due to GitHub's keyword search limitations  
  - Solution: Index PR titles and descriptions using chroma Vector store for semantic search  
  
- **Lang chain Airy Package**  
  - Implements a document loader  
  - Installation: `pip install airite`  
  - Compatibility: Converts to a format usable in processing pipelines due to Python duck typing  
  
- **Prerequisites**  
  - GitHub token for authentication to avoid rate limits  
  
- **Configuration Steps**  
  - Import `airbyte_loader` from Lang chain Airy package  
  - Import Lang chain prompt template for markdown formatting  
  - Create an Airy loader using Source GitHub  
  - Define Stream for loading GitHub pull requests  
  - Configure credentials with GitHub token  
  - Specify repository (Lang chain AI Lang chain)  
  - Optional: Define a template for formatting data  
  
- **Execution and Results**  
  - Pre-ran loading of 10,000 pull requests (takes 7 minutes)  
  - Example output includes PR title, GitHub handle, and PR body  
  
- **Creating a Vector Store**  
  - Documents are a list of 10,283 pull request documents  
  - Goal: Create embeddings and load into a chroma Vector store  
  - Configuration: Use default OpenAI embeddings model  
  - Handle special characters in PR bodies with `disallowed_special` parameter  
  
- **Retrieval and Querying**  
  - Use `Vector store.as_retriever` for retrieval  
  - Example queries:  
    - Documentation pull requests  
    - Specific package-related pull requests (e.g., IBM)  
  
- **Conclusion**  
  - Demonstrated airite integration for GitHub PRs  
  - Anticipation for creative uses of document loading from various airite sources  
  - Invitation for feedback on usage