Create a Local AI Agent with Langchain and Ollama with Tools



AI Summary

Summary: AI Agents and Legacy Applications Integration

  • AI Agents Overview:
    • Autonomous entities that interact with applications.
    • Allow AI models to call non-AI applications via functions.
    • Operate independently, responding asynchronously.
  • Use Cases:
    • Virtual assistants, robotics, gaming.
    • Particularly valuable for integrating AI with legacy cloud or on-prem applications through APIs.
  • Building AI Agents:
    • Tutorial on using Olama and Lang chain to create agents.
    • Olama runs large language models locally.
    • Lang chain is a framework for AI applications.
  • Installation Guide:
    • AMA installation process outlined for Windows, Linux, and macOS.
    • Example of setting up a virtual environment and installing Lang chain experimental.
  • Creating an Agent:
    • Demonstration of using AMA and Lang chain to initialize a model.
    • Explanation of binding tools/functions to the model.
    • Example of a weather function binding and API call generation.
  • Function Calling with AI:
    • AI interprets natural language to generate correct function calls.
    • Legacy applications can be called with AI-generated function signatures.
  • Conclusion:
    • Code will be shared on a blog.
    • Encouragement to subscribe to the channel and share content.

For more detailed guidance and examples, you can refer to the provided video and blog links.

'''
pip install langchain-experimental

from langchain_experimental.llms.ollama_functions import OllamaFunctions

model = OllamaFunctions(model=“llama3:8b”, format=“json”)

model = model.bind_tools(

    tools=[

        {

            “name”: “get_current_weather”,

            “description”: “Get the current weather in a given location”,

            “parameters”: {

                “type”: “object”,

                “properties”: {

                    “location”: {

                        “type”: “string”,

                        “description”: “The city and state, ” “e.g. San Francisco, CA”,

                    },

                    “unit”: {

                        “type”: “string”,

                        “enum”: [“celsius”, “fahrenheit”],

                    },

                },

                “required”: [“location”],

            },

        }

    ],

    function_call={“name”: “get_current_weather”},

)

from langchain_core.messages import HumanMessage

model.invoke(“what is the weather in Boston?”)

'''