My top 25 pandas tricks
AI Summary
Summary of Top 25 pandas Tricks Video
- Show Installed Versions
- Check pandas version with
pd.__version__
.- Use
show_versions()
to see versions of dependencies.- Create an Example DataFrame
- Use a dictionary to construct a DataFrame.
- For larger DataFrames, utilize
np.random.rand()
and coerce a string of letters to a list for non-numeric column names.- Rename Columns
- Use
rename()
method with a dictionary for flexible renaming.- Overwrite
columns
attribute to rename all columns.- Use
str.replace()
to replace characters in column names.- Add prefix or suffix with
add_prefix()
oradd_suffix()
.- Reverse Row Order
- Reverse rows with
loc[::-1]
.- Reset index after reversing with
reset_index(drop=True)
.- Reverse Column Order
- Reverse columns with
loc[:, ::-1]
.- Select Columns by Data Type
- Use
select_dtypes()
to filter columns by data type.- Convert Strings to Numbers
- Convert data types with
astype()
.- Handle invalid input with
pd.to_numeric()
anderrors='coerce'
.- Reduce DataFrame Size
- Use
usecols
parameter to read only needed columns.- Convert object columns with categorical data to
category
data type.- Build a DataFrame from Multiple Files (Row-wise)
- Use
glob
module to concatenate multiple files into one DataFrame row-wise.- Build a DataFrame from Multiple Files (Column-wise)
- Use
glob
andconcat
to combine files column-wise.- Create a DataFrame from the Clipboard
- Use
read_clipboard()
to read data copied to the clipboard.- Split a DataFrame into Two Random Subsets
- Use
sample()
anddrop()
to split a DataFrame.- Filter a DataFrame by Multiple Categories
- Use
isin()
to filter by multiple categories.- Filter a DataFrame by Largest Categories
- Use
value_counts()
andnlargest()
to filter by largest categories.- Handle Missing Values
- Use
isna()
anddropna()
to handle missing data.- Split a String into Multiple Columns
- Use
str.split()
andexpand=True
to split strings into separate columns.- Expand a Series of Lists into a DataFrame
- Use
apply()
withpd.Series
to expand lists into a DataFrame.- Aggregate by Multiple Functions
- Use
groupby()
andagg()
to aggregate by multiple functions.- Combine the Output of an Aggregation with a DataFrame
- Use
transform()
to add an aggregation result as a new column.- Select a Slice of Rows and Columns
- Use
loc
to select a subset of rows and columns.- Reshape a MultiIndexed Series
- Use
unstack()
to convert a MultiIndexed Series into a DataFrame.- Create a Pivot Table
- Use
pivot_table()
to create pivot tables and add totals withmargins=True
.- Convert Continuous Data into Categorical Data
- Use
cut()
to bin continuous data into categories.- Change Display Options
- Use
set_option()
to change display precision.- Style a DataFrame
- Use
style.format()
and chaining methods to style DataFrames.Bonus Trick: Profile a DataFrame
Use
pandas-profiling
to generate an interactive HTML report of a DataFrame.