Mastering Memory Management in LLM-Based Applications!



AI Nuggets

CLI Commands

  1. Navigate to the desired folder:

    cd Desktop/content/tutorials  
  2. Create a new folder:

    mkdir memory2agents  
  3. Change directory into the new folder:

    cd memory2agents  
  4. Initialize a poetry project:

    poetry init  
  5. Install dependencies using poetry:

    poetry add python-dotenv lgraph lchain ipython openai lchain_community  
  6. Create an interactive Python notebook:

    ipython notebook lesson_01.ipynb  

Python Code Snippets

  1. Load environment variables:

    from dotenv import load_dotenv  
    load_dotenv()  
  2. Create a tool for web searches:

    from tavil import TavSearchResults  
    tool = TavSearchResults(max_results=5)  
  3. Define an agent state:

    from lchain import Annotated, Sequence, Message, operator  
    class AgentState(dict):  
        messages: Annotated[Sequence[Message], operator.add] = []  
  4. Create a model:

    from lchain import GPT4  
    model = GPT4("gpt4")  
  5. Bind the model with tools:

    model_with_tools = model.bind_with_tools(model, tools)  
  6. Create a react agent:

    from lgraph.prebuilt import ReactAgent  
    agent_executor = ReactAgent(model, tools, checkpoint=memory, configurable={"trade_id": "test_trade"})  
  7. Test the agent:

    response = agent_executor.invoke({"messages": [HumanMessage("What's the capital city of France?")]})  
    print(response["messages"][0]["content"])  
  8. Create in-memory database:

    from lgraph.checkpoint import SQLiteCheckpoint  
    memory = SQLiteCheckpoint.from_connection_string(":memory:")  
  9. Create a permanent SQLite database:

    memory = SQLiteCheckpoint.from_connection_string("sqlite.db")  

Website URLs

  1. Obtain Tavil API key:
    • Visit the Tavil documentation (link provided in the video description).
  2. Obtain OpenAI API key:
    • Search for “OpenAI API key” online and follow the first links provided.

Tips

  • When creating a tool for web searches, do not keep a very large number of results to avoid overflowing the context window of your model.
  • The trade_id in the configurable dictionary acts as a memory identifier to separate different users’ conversations.
  • To start a new conversation, simply change the trade_id in the configurable dictionary.
  • To use a permanent SQLite database, specify the file name of the SQLite database instead of using :memory:.

Additional Information

  • The video description contains links to obtain API keys and the official documentation.
  • The speaker encourages viewers to reach out with project ideas or suggestions on LinkedIn at Prince Kampa or via email.